Welcome back to our Word of the Week!

Every week, we look together at a word that is either interesting, funny or mysterious and that appeals to all of us in the aviation community.

Wake Turbulence

Wake turbulence is a disturbance in the atmosphere that forms behind an aircraft as it passes through the air. It includes various components, the most important of which are wingtip vortices and jetwash.

Jetwash refers simply to the rapidly moving gases expelled from a jet engine; it is extremely turbulent, but of short duration. Wingtip vortices, on the other hand, are much more stable and can remain in the air for up to three minutes after the passage of an aircraft. It is therefore not true turbulence in the aerodynamic sense, as true turbulence would be chaotic. Instead, it refers to the similarity to atmospheric turbulence as experienced by an aircraft flying through this region of disturbed air.

A NASA experiment depicting the wake turbulence

Wingtip vortices occur when a wing is generating lift. Air from below the wing is drawn around the wingtip into the region above the wing by the lower pressure above the wing, causing a vortex to trail from each wingtip. The strength of wingtip vortices is determined primarily by the weight and airspeed of the aircraft. Wingtip vortices make up the primary and most dangerous component of wake turbulence.

Wake turbulence is especially hazardous in the region behind an aircraft in the takeoff or landing phases of flight. During take-off and landing, aircraft operate at high angle of attack. This flight attitude maximizes the formation of strong vortices. In the vicinity of an airport there can be multiple aircraft, all operating at low speed and low altitude, and this provides extra risk of wake turbulence with reduced height from which to recover from any upset.

Have a nice week, and see you next Wednesday for a new word of the week!